

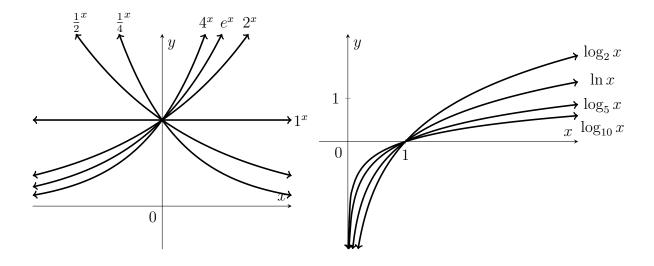
U of I MAC Handouts: Rules for Logarithms, Exponents, and Radical

Logs to Exponentials	Rules of Radicals
$log_b x = y \iff b^y = x$	$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$
$lnx = y \iff e^y = x$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
Laws of Logarithms	$\sqrt[n]{b} = b^{\frac{1}{n}}$
$log_b(xy) = log_b x + log_b y$	Change of Dega
$log_b(\frac{x}{y}) = log_b x - log_b y$	Change of Bases
y = y	$log_b(a) = \frac{log(a)}{log(b)}$

 $log_b(x^r) = rlog_b x$

Inverse Operations

 $e^{lnx} = x$


Rules of Exponents

$x^a \cdot x^b = x^{a+b}$	$ln(e^x) = x$
$\frac{x^a}{x^b} = x^{a-b}$	$b^{\log_b x} = x$
$(x^a)^b = x^{ab}$	$log_b(b^x) = x$

Domain and Range

- Logarithmic functions have a domain of $(0, \infty)$ and range of $(-\infty, \infty)$.
- Exponential functions have a domain of $(-\infty, \infty)$ and range of $(0, \infty)$.

Function Graphs

- The function $f(x) = b^x$ is decreasing when b < 0.
- The function $f(x) = b^x$ is increasing when b > 0.
- The function $f(x) = 1^x$ is a horizontal line.
- The larger the base of a logarithm, the *sharper* the curve.